If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2-16k-3=0
a = 4; b = -16; c = -3;
Δ = b2-4ac
Δ = -162-4·4·(-3)
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{19}}{2*4}=\frac{16-4\sqrt{19}}{8} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{19}}{2*4}=\frac{16+4\sqrt{19}}{8} $
| 2+g/14=5 | | (7x+9=9x+5) | | 3.25+0.5x+11/3+5/6x=72/12 | | 3x-2/8+4-2x/8=-1/2 | | r+r+3r−4r+r=4 | | 5a+12=2a | | 7/2n-11/25=5/9 | | 10h+6h+4h=20 | | i/6=4.2 | | (x-3^2)-2=13 | | 2x-1÷/3÷5=1 | | x+(.05x)=500000 | | x-3^2-2=13 | | 8+3x=2(-x+5)-37 | | 199-x=101 | | -x+275=3 | | 19-4c=15 | | 8v=4v+2 | | 7x=870+× | | 31=2m-9 | | 10+a/8=18 | | 2/3(2x-19)=14 | | -1/2(24+6x)=-3x+12 | | 214=-y+65 | | 18b−6b+2b−5b−6b=18 | | 56x56x+6=28−x | | 3w/5=12 | | 282=240-w | | -5(2x-21)=2(x-3)-33 | | -v+233=166 | | 2s-2s+s=13 | | 2b-1/3=4 |